Jensen's Inequality for Convex-Concave Antisymmetric Functions and Applications
نویسندگان
چکیده
منابع مشابه
JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملConcave and Convex Interference Functions - General Characterizations and Applications
Many resource allocation problems can be studied within the framework of interference functions. Basic properties of interference functions are non-negativity, scale-invariance, and monotonicity. In this paper, we study interference functions with additional properties, namely convexity, concavity, and log-convexity. Such interference functions occur naturally in various contexts, e.g., adaptiv...
متن کاملShort Proofs of the Separation Theorems for L-convex/concave and M-convex/concave Functions
Recently K. Murota has introduced concepts of L-convex function and Mconvex function as generalizations of those of submodular function and base polyhedron, respectively, and has shown separation theorems for L-convex/concave functions and for M-convex/concave functions. The present note gives short alternative proofs of the separation theorems by relating them to the ordinary separation theore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2008
ISSN: 1025-5834,1029-242X
DOI: 10.1155/2008/185089